ON SOME FINITE p-GROUPS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON AUTOMORPHISMS OF SOME FINITE p-GROUPS

We give a sufficient condition on a finite p-group G of nilpotency class 2 so that Autc(G) = Inn(G), where Autc(G) and Inn(G) denote the group of all class preserving automorphisms and inner automorphisms of G respectively. Next we prove that if G and H are two isoclinic finite groups (in the sense of P. Hall), then Autc(G) ∼= Autc(H). Finally we study class preserving automorphisms of groups o...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

On the factorization numbers of some finite p-groups

This note deals with the computation of the factorization number F2(G) of a finite group G. By using the Möbius inversion formula, explicit expressions of F2(G) are obtained for two classes of finite abelian groups, improving the results of Factorization numbers of some finite groups, Glasgow Math. J. (2012). MSC (2010): Primary 20D40; Secondary 20D60.

متن کامل

On the nilpotency class of the automorphism group of some finite p-groups

Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.

متن کامل

ON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS

Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2004

ISSN: 1015-8634

DOI: 10.4134/bkms.2004.41.1.147